Hydrogenated Li(4)Ti(5)O(12) nanowire arrays for high rate lithium ion batteries.
نویسندگان
چکیده
Self-supported Li(4) Ti(5) O(12) nanowire arrays with high conductivity architectures are designed and fabricated for application in a Li-ion battery. The Li(4) Ti(5) O(12) nanowire arrays grow directly on Ti foil by a facile solution-based method, further enhancing Li-ion storage properties by creating Ti(3+) sites through hydrogenation. This configuration ensures that every Li(4) Ti(5) O(12) nanowire participates in the fast electrochemical reaction, enabling remarkable rate performance and a long cycle life.
منابع مشابه
Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries
A mesoporous Li 4 Ti 5 O 12 /C nanocomposite is synthesized by a nanocasting technique using the porous carbon material CMK-3 as a hard template. Modifi ed CMK-3 template is impregnated with Li 4 Ti 5 O 12 precursor, followed by heat treatment at 750 ° C for 6 h under N 2 . Li 4 Ti 5 O 12 nanocrystals of up to several tens of nanometers are successfully synthesized in micrometer-sized porous ca...
متن کاملFlexible graphene-based lithium ion batteries with ultrafast charge and discharge rates.
There is growing interest in thin, lightweight, and flexible energy storage devices to meet the special needs for next-generation, high-performance, flexible electronics. Here we report a thin, lightweight, and flexible lithium ion battery made from graphene foam, a three-dimensional, flexible, and conductive interconnected network, as a current collector, loaded with Li(4)Ti(5)O(12) and LiFePO...
متن کاملDoes Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity.
A carbon-free Li(4)Ti(5)O(12) electrode has shown excellent electrochemical performance without any effort to enhance the electrical conductivity. Partial reduction of Ti(4+) and a metallic Li(7)Ti(5)O(12) phase are suggested to be possible origins of the exceptional behavior.
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملUniform Nickel Vanadate (Ni3V2O8) Nanowire Arrays Organized by Ultrathin Nanosheets with Enhanced Lithium Storage Properties
Development of three-dimensional nano-architectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a novel type of Ni3V2O8 nanowires, organized by ultrathin hierarchical nanosheets (less than 5 nm) on Ti foil, has been obtained by a two-step hydrothermal synthesis method. Studies on structural and thermal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 24 48 شماره
صفحات -
تاریخ انتشار 2012